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Tomographic particle image velocimetry was used to quantitatively visualize the
three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary
layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on
momentum thickness Reθ = 34 000. The instantaneous velocity fields give evidence of
hairpin vortices aligned in the streamwise direction forming very long zones of low-
speed fluid, consistent with Tomkins & Adrian (J. Fluid Mech., vol. 490, 2003, p. 37).
The observed hairpin structure is also a statistically relevant structure as is shown
by the conditional average flow field associated to spanwise swirling motion. Spatial
low-pass filtering of the velocity field reveals streamwise vortices and signatures of
large-scale hairpins (height > 0.5δ), which are weaker than the smaller scale hairpins
in the unfiltered velocity field. The large-scale hairpin structures in the instantaneous
velocity fields are observed to be aligned in the streamwise direction and spanwise
organized along diagonal lines. Additionally the autocorrelation function of the wall-
normal swirling motion representing the large-scale hairpin structure returns positive
correlation peaks in the streamwise direction (at 1.5δ distance from the DC peak)
and along the 45◦ diagonals, which also suggest a periodic arrangement in those
directions. This is evidence for the existence of a spanwise–streamwise organization
of the coherent structures in a fully turbulent boundary layer.

1. Introduction
Studies of coherent structure in the outer layer of a turbulent boundary layer have

historically concentrated on hairpin-like vortices as the dominant feature in these
flows (Theodorsen 1952; Head & Bandyopadhyay 1981; Robinson 1991 amongst
many others) although flow visualizations also revealed larger bulges of the size of
the boundary layer thickness δ (e.g. Falco 1977). More recently, it was realized that
hairpin vortices are in turn organized into packets (Adrian, Meinhart & Tomkins
2000; Christensen & Adrian 2001), which can be thought of as a streamwise train of
hairpins. Not only do these packets occur frequently, they also contribute significantly

† Present address: Laboratory for Aero and Hydrodynamics, Delft University of Technology,
2628CA Delft, The Netherlands. Email address for correspondence: g.e.elsinga@tudelft.nl



36 G. E. Elsinga, R. J. Adrian, B. W. van Oudheusden and F. Scarano

to the Reynolds shear stress (Ganapathisubramani, Longmire & Marusic 2003). These
reports were subsequently followed by particle image velocimetry (PIV) and hot-wire
observations of even larger scale motions ranging up to 40δ in streamwise direction
(e.g. Kim & Adrian 1999; Guala, Hommema & Adrian 2006; Hutchins & Marusic
2007; Ganapathisubramani, Clemens & Dolling 2007b; Balakumar & Adrian 2007),
which manifest long regions of low velocity. They have been referred to as very
large-scale motions (VLSM) or superstructures. Based on their signatures in one-
dimensional hot-wire signals, it has been conjectured that the elongated structures
result from streamwise aligned hairpin packets (Kim & Adrian 1999). It should be
noted that here, and throughout the paper, the term hairpin is used to represent
cane, hairpin, horseshoe and omega shaped vortices (following Adrian et al. 2000),
which are believed to be variations of the same basic structure. The hairpin vortex
is nowadays regarded to be more of a building block than an individual structure.
For a recent review of the topic see Adrian (2007). It is noteworthy that large-scale
organization of the coherent structures in the spanwise direction has not been observed
and is not contemplated in these discussions.

The instantaneous flow structures in high-Reynolds-number supersonic boundary
layers are currently believed to be very similar to the incompressible subsonic case.
This idea is largely based on the observed similarity of the eddies at the interface
of the large-scale bulges in Rayleigh scattering and oil droplet visualizations (Spina,
Donovan & Smits 1991; Smith & Smits 1995) with further supporting evidence coming
from conditional averaged flow fields obtained by hot-wire anemometry (Spina et al.
1991). It has been hypothesized that as long as the fluctuating Mach number is below
0.2, direct compressibility effects are not important, which would be the case for
free-stream Mach numbers up to 4 (Spina, Smits & Robinson 1994). Moreover, the
velocity average and fluctuation profiles collapse onto the incompressible profile when
the variation of the fluid properties (i.e. temperature and density) across the boundary
layer is taken into account in the scaling (Smits & Dussauge 2006). More recently,
Ganapathisubramani, Clemens & Dolling (2006) performed PIV in a plane parallel
to the wall showing very long high and low-speed regions consistent with the VLSM
model (Kim & Adrian 1999) for subsonic flow, which again suggests the presence
of hairpin vortices aligned in the streamwise direction. Although the occurrence of
hairpins in the supersonic boundary layer has been suggested previously on the
basis of flow visualization, a direct observation in velocity measurements is lacking
presently.

The complete three-dimensional structure of supersonic boundary layers is starting
to become available from direct numerical simulation (Martin 2007). The returned
hairpin and packets at Mach 3, Reθ = 2600 are comparable to those found in low-
Reynolds-number subsonic boundary layers (Ringuette, Wu & Martin 2008). Yet the
inherent Reynolds number limitation of these simulations leaves questions regarding
the structure at high Reynolds number.

The three-dimensional velocity distribution in high-speed turbulent flow has recently
become accessible experimentally through the development of the tomographic PIV
technique (Elsinga et al. 2006b, Elsinga 2008). This technique is a variation of standard
PIV that uses volume illumination of tracer particles added to flow and records the
particle images from different viewing directions simultaneously. The instantaneous
particle distribution within the measurement volume is reconstructed from these
images onto a discrete voxel array by a tomographic algorithm. Reconstructions
are then cross-correlated to obtain the particle displacement between subsequent
recordings and hence flow velocity. Having the full velocity field allows quantitative
visualization of the vortical motion and computation of the three-dimensional
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conditionally averaged eddies, thereby permitting more direct interpretation of the
results than in probe and planar measurements. Previous results obtained with this
technique in low-speed turbulent boundary layer flows have been reported in Schröder
et al. (2007) and Elsinga et al. (2007).

The present study applies the tomographic PIV technique to measure the
instantaneous three-dimensional velocity distribution in a supersonic turbulent
boundary layer (Mach 2, Reθ = 34 000) in order to visualize the coherent structures
and, additionally, to investigate their spatial organization in relation to the observed
large-scale motions in the flow. Particular attention will go to the large-scale vortices
(of size comparable to a bulge) and their organization, not only in the streamwise,
but also in the spanwise direction. At this high Reynolds number the packets are
expected to be long in the streamwise direction, which is beneficial to the experimental
investigation as they are detected more easily. Furthermore, a large range of scales is
expected. Given the similarity between the compressible and incompressible cases (as
mentioned above) the present results may be relevant to subsonic boundary layers
as well, especially because three-dimensional velocity information at high Reynolds
numbers is scarce due to the current limitations of direct numerical simulation and
experimental techniques.

Recently, the structure of the supersonic boundary layer has also received important
interest in relation to shock wave turbulent boundary layer interactions with a number
of studies indicating a relation between the coherent structures in the incoming
boundary layer and the shock unsteadiness (e.g. Ganapathisubramani, Clemens &
Dolling 2007a, Humble et al. 2009). The present characterization of the boundary
layer may contribute to this topic by providing reference data for the undisturbed
turbulent flow structure.

In the remainder of the paper, the experimental set-up will be discussed (§ 2)
including the methods chosen for the reduction of the data aiming at vortex
visualization (§ 3). The analysis of the flow field is performed making use of the
instantaneous snapshots (§ 4) and the conditional averaged eddies inferred as from
linear stochastic estimation. Furthermore, the supersonic hairpins will be compared
with previous results from a low Reynolds number incompressible boundary layer
(§ 5). The large-scale motions are obtained from a spatial filtering (§ 6) and they will
be shown to exhibit a preferential alignment along the streamwise direction as well
as the spanwise diagonal. This is followed by a discussion of the spatial relationship
between the different vortex scales (§ 7) and a summary of the main conclusions
in § 8.

2. Experimental set-up
2.1. Flow conditions

The experiments were performed in the transonic–supersonic wind tunnel TST-27 at
Delft University of Technology. The turbulent boundary layer over the test section
sidewall was measured at a free-stream velocity Ue = 510 m s−1 and Mach number
Me = 2.1. The flow in the boundary layer was optically accessible through the large
Schlieren window in this sidewall. The boundary layer underwent natural transition
far upstream in the tunnel nozzle and developed along the smooth flat tunnel wall
over approximately 2 m before reaching the 270 × 280 mm2 test section. At the
measurement location the boundary layer thickness δ99 and momentum thickness θ

were 20 and 1.2 mm respectively (for more detail on the boundary layer properties
see table 1), as inferred from planar PIV measurements by Humble et al. (2006)
and Humble, Scarano & van Oudheusden (2007). The density variation necessary
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Ue 510 m s−1

Me 2.1
δ99 20 mm
δ∗ 3.7 mm
θ 1.2 mm
H = δ∗/θ 3.1
uτ 19.5 m s−1

uτ /vw 354 mm−1

δ+ 7080
cf 1.65 × 10−3

Reθ 34 000

Table 1. Supersonic turbulent boundary layer properties (after Humble et al. 2006).

to calculate the momentum thickness was deduced from the measured velocity
distribution using the adiabatic Crocco–Busemann relation with constant pressure
and recovery factor (r = 0.89) across the boundary layer.

The definition of the relevant Reynolds number is not trivial in the case of
supersonic boundary layer flow, because of the significant temperature variations over
the boundary layer height (Smits & Dussauge 2006). Perhaps the most commonly
adopted is Reθ = ρeUeθ/μe, which is based on the free-stream fluid properties.
Alternatively, the Reynolds number can be based on the shear stress at the wall
resulting in Reδ2 = ρeUeθ/μw , where the subscripts e and w denote free stream
and wall conditions respectively. It is still unclear which of the two should be
used for comparison with subsonic boundary layers. Therefore, both are given here:
Reθ = 34 000 and Reδ2 = 20 000.

2.2. Tomographic PIV

For the PIV measurements the flow was seeded with 240 nm TiO2 particles to a
concentration of approximately 3 particles mm−3 corresponding to a particle image
density of 0.05 particles pixel−1, which was sufficiently low to yield an accurate
particle reconstruction (Elsinga, van Oudheusden & Scarano 2006a, Elsinga 2008).
The frequency response of these tracers was established to be 420 kHz corresponding
to a relaxation time of 2.4 μs (Schrijer & Scarano 2007). The inability to follow
higher flow accelerations was not a concern here, because the measured velocity in
PIV already represented an average over the time between exposures, which was
close to the relaxation time in the present experiment. The particles were illuminated
by a Spectra-Physics 400 mJ double pulse Nd:Yag laser in a light ‘sheet’ that was
oriented parallel to the wall and was expanded to a 6.5 mm thickness in wall-normal
direction. The sheet formation optics were contained in the light probe located
downstream of the test section (figure 1). Furthermore, a slit was added to the light
path to create a sharp top-hat-like light intensity profile resulting in a well-defined
illumination volume. Four high-resolution CCD cameras (LaVision Imager Pro X,
2048 × 2048 pixels, 14 bit) within a solid angle of approximately 30 × 30 square
degrees were used to record the particle images (figure 1) with an average resolution
of 23 pixels mm−1. The lens f# was set to 11 and 8.0 for the cameras in forward
and backward scatter respectively. The time separation between subsequent exposures
was 2 μs, which for the chosen volume discretization yielded a particle displacement
of 20 voxels in the free stream. Both the light probe and camera system could be
translated, permitting measurement of the velocity distribution at different heights
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Figure 1. Optical arrangement at the TST-27 transonic/supersonic wind tunnel.

in the boundary layer. However, the emphasis in this paper will be on the results
obtained for the configuration where the laser sheet was closest to the wall covering
the region 3.0 <y < 9.5 mm (0.15 < y/δ < 0.47).

The camera system was calibrated by scanning a plate with 10 × 10 dots through
the volume in steps of 4 mm in depth over a total range of 8 mm covering the
complete light sheet. In each of the three calibration planes the relation between the
physical coordinates and image coordinates was described by a third-order polynomial
fit. Linear interpolation was used to find the corresponding image coordinates at
intermediate depth positions. Then the volume self-calibration procedure described
by Wieneke (2008) was used to improve the calibration accuracy to better than 0.2
pixels for all cameras. The self-calibration correction was found to slightly increase
the returned vorticity levels, but it did not affect the appearance of the flow structures.

The intensity distribution in the volume was reconstructed from the recorded
images using the multiplicative algebraic reconstruction technique (MART) algorithm
(Elsinga et al. 2006b) with five iterations. The reconstructed volume dimensions in
streamwise (x), wall-normal (y) and spanwise direction (z) were 70 × 6.5 × 35 mm3,
which was discretized at 203 voxels mm−3. The particle motion analysis was performed
by cross-correlation adopting a multi-grid method including volume deformation
(Scarano & Riethmuller 2000). The measurement spatial resolution was dictated by
the final interrogation box size of 403 voxels (2.0 × 2.0 × 2.0 mm3) each including
approximately 24 tracers. The cross-correlation signal-to-noise ratio, defined as the
ratio of the first and second correlation peak, was approximately 2.5. A 75 % overlap
factor was applied between neighbouring boxes returning a vector spacing of 0.50 mm
in each direction (corresponding to 177 viscous wall units, νw/uτ , based on the fluid
properties at the wall) resulting in an overall measurement grid counting 142 × 14 × 77
vectors. The complete dataset consisted of 480 instantaneous three-dimensional vector
fields in each configuration (i.e. wall-normal position of the laser volume).

The accuracy of the present velocity measurement has been assessed in Humble
et al. (2009) by comparing the root mean square (RMS) velocity profiles in the
wall-normal direction with other laser Doppler anemometry (LDA) and planar PIV
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measurements. An agreement within 2.9 m s−1 was found, which corresponds to 0.15
pixel particle displacement. The latter value is consistent with the tomographic PIV
uncertainty as determined in earlier comparative studies in a cylinder wake flow
and an incompressible turbulent boundary layer (Elsinga 2008). Hence, the accuracy
of the measurement is 0.57 % of the free-stream velocity Ue, which corresponds
to approximately 5 % of the fluctuating velocity (taking the level of fluctuation
in the boundary layer at 9% of Ue). For second-order moments, such as the
Reynolds shear stress, the level of uncertainty would be twice, i.e. 10 %. From
the favourable comparison of the RMS velocity profiles it can also be concluded that
the energy containing turbulent motions have been resolved, even though the smallest
Kolmogorov scale is clearly beyond the reach of the present measurement. It should,
however, be noted here that in a high-Reynolds-number boundary layer flow, the
local Kolmogorov length scale can become relatively large in the outer region; of the
order of 100 wall units above approximately yuτ/vw =1000 (e.g. Stanislas, Perret &
Foucaut 2008).

2.3. Hot-wire anemometry

Constant temperature hot-wire anemometry measurements were also performed to
assess the large-scale low-frequency motion in the boundary layer. The hot-wire
system consisted of a DISA 55M10 CTA bridge with a Dantec 55P11 single wire
probe, which was made of 1.25 mm long, 5 μm diameter tungsten wire. The equivalent
wire length in viscous wall units was 443. The overheat ratio was set to 0.88, so that
the hot wire was mainly sensitive to mass-flux fluctuations (ρu)’ and not so much to
total temperature fluctuations (Smits, Hayakawa & Muck 1983). The wire response
frequency was 50 kHz, however due to a tail in the response, the measured power
spectrum was affected up to 20 kHz corresponding to a wavelength of 1.3δ using
Taylor’s hypothesis. The probe was translated along the wall-normal direction to
measure at different y/δ. The hot-wire system was calibrated using the mean voltage
at different heights in the boundary layer with the corresponding mass flux obtained
from the measured velocity distribution by PIV in combination with the adiabatic
Crocco–Busemann relation. The main purpose for this calibration was to normalize
the power spectra and not to obtain very accurate Reynolds stress levels. The accuracy
of the procedure in this case was found to be limited by the accuracy of planar PIV,
which typically is of the order of 1 % of the mean velocity.

3. Data reduction and display
The flow structures of interest in this study are the low-speed zones (this terminology

is used here to distinguish outer layer features from the near-wall streaks as reported,
for example, by Kline et al. 1967) and the vortical structures, which often combine
into hairpin packets. The former can be simply visualized by isosurfaces of the u
component of velocity selecting a level below the local average velocity.

Vortical motion is visualized using the Q criterion (Hunt, Wray & Moin 1988),
which is based on the analysis of the second invariant Q of the local velocity gradient
tensor ∇V . For incompressible flow this criterion can be written as:

Q = 1
2

(
|Ω |2 − |S|2

)
> 0, (3.1)

where S = (∇V +(∇V )T )/2 is the rate-of-strain tensor and Ω = (∇V − (∇V )T )/2 is the
vorticity tensor. Hence Q is a measure of the excess rotation rate relative to strain rate
and indicates a local swirling flow topology, as shown by Chakraborty, Balachandar &
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Adrian (2005). This kinematic interpretation allows the incompressible formulation
of (3.1) to be applied in case of compressible flow as well. Moreover as previously
discussed, compressibility effects are expected not to be important for the present
case. A non-zero Q threshold is employed to clearly identify the vortical structures
separating them from the measurement noise.

Q is a scalar quantity and has no direction. Therefore occasionally a two-
dimensional swirling strength is used to discriminate between streamwise, spanwise
and wall-normal vortices. The swirling strength criterion (Zhou et al. 1999) uses
the imaginary part of the complex conjugate eigenvalues λci of ∇V , which is always
positive or zero when ∇V has only real eigenvalues. Instead of the full velocity gradient
tensor, the two-dimensional swirling strength uses only the velocity components and
gradients in a two-dimensional plane. For instance, the spanwise swirling strength
λci,z considers only the velocity in the x, y plane and is defined as the imaginary part
of the eigenvalues of Juv given by

Juv =

⎡
⎢⎢⎣

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

⎤
⎥⎥⎦ . (3.2)

Similarly the steamwise swirling strength λci,x and wall-normal swirling strength
λci,y are the imaginary part of the eigenvalues of Jvw and Juw respectively. Finally,
the two-dimensional swirling strength can be given a sign using the corresponding
component of vorticity (e.g. λci,z·sign(ωz)).

The components of the velocity gradient tensor ∇V are obtained from a second-
order regression. In this procedure the function:

freg (rx, ry, rz) = a0+a1rx+a2ry+a3rz+a4rxry+a5rxrz+a6ryrz+a7r
2
x+a8r

2
y+a9r

2
z , (3.3)

is fit in the least squares sense to each component of velocity in a 5 × 5 × 5
neighbourhood of a point x ′, y ′, z′. The variables rx, ry, rz are distances in the x,
y and z direction w.r.t. point x ′, y ′, z′ and the coefficients ai are the fit parameters
with a0 being the filtered velocity at x ′, y ′, z′ and a1, a2, a3 being the local gradients
in x, y and z respectively. The regression, also known as Savitzky–Golay filtering
(Savitzky & Golay 1964), is a linear filter, i.e. linear in ai . Because it is not a
very common filter, a comprehensive discussion of its spatial frequency response is
included in the Appendix. Note that the presently applied 5 × 5 × 5 kernel size is
equal to the cross-correlation interrogation volume (when using 75 % overlap), so
that the spatial frequency response of cross-correlation and regression are similar.
Consequently, the regression reduces the measurement noise without significantly
affecting the measurement spatial resolution. Additionally, the regression filter will be
used as a low-pass filter in § 6.

For the statistical evaluation of the flow structures linear stochastic estimation
(Adrian 1996; Christensen & Adrian 2001) is used to approximate the average velocity
field associated to a specified event E at x ′, y ′, z′. In its simplest form E represents
a scalar quantity obtained or derived from the measured velocity distribution, e.g.
E = u′ or E = λci,z·sign(ωz). The conditional average 〈V̂ (x, y, z)|E(x ′, y ′, z′)〉 is then
written as a linear function of the event E, where the coefficient is obtained by
minimizing the mean-square error between the estimate and the conditional average.
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Figure 2. (a) Instantaneous vortex distribution detected by the Q criterion (green) and
low-speed zones (blue, u < 0.80Ue) for 0.15< y/δ < 0.47. (b) A contour plot of the u component
of velocity at y/δ = 0.20.

For the fluctuating components of velocity V ′ = (u′, v′, w′) this results in

〈V̂ ′(x ′ + rx, y, z′ + rz|E(x ′, y ′, z′)〉 ≈ 〈V ′(x ′ + rx, y, z′ + rz) · E(x ′, y ′, z′)〉
〈E(x ′, y ′, z′)2〉 E(x ′, y ′, z′).

(3.4)

As seen from the equation the conditional average is estimated by unconditional
two-point correlations, which are much easier to compute than the conditional average
itself. Furthermore, it is important to note that the estimate uses the fluctuating
velocity components V ′ relative to the local average and that the estimate is linear,
so that the character of estimate does not change with the value of E. Finally, if it is
assumed that in a boundary layer the two-point correlations are independent of the
x and z coordinate, then the conditional average is only a function of rx, y and rz

and 〈. . .〉 in (3.4) denotes averaging over all velocity field snapshots as well as spatial
averaging in x and z.

4. Instantaneous flow field
A typical example of the instantaneous flow field is presented in figure 2, where the

x-, y- and z-axis correspond to the streamwise, wall-normal and spanwise direction
respectively. In the plot the vortical motion (green) is visualized using the Q criterion
(the applied threshold is 10−9(∂u/∂y)2w) and the zones of low velocity (blue) are
indicated by the isosurface u/Ue = 0.80 corresponding to approximately 95 % of the
average velocity at this height in the boundary layer. Note that the visualization
of the low-speed zones is not very sensitive to the applied threshold, since they are
separated from the high-speed flow by regions of high shear, as for instance can be
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seen in the u contour plot of figure 2. This is much like the zones of relatively uniform
momentum observed by Meinhart & Adrian (1995). The low-speed zones are several
boundary layer thicknesses long, and they often extend beyond the measurement
volume. Ganapathisubramani et al. (2007b) even report lengths up to 40δ at y/δ = 0.2
in their supersonic boundary layer visualization based on high repetition rate PIV
measurements and using Taylor’s hypothesis. Long low-speed zones have also been
found in incompressible turbulent boundary layers and pipe flow using a single
hot-film (Kim & Adrian 1999) or a spanwise array of 10 hot wires to account for
meandering of the low-speed zones (Hutchins & Marusic 2007). The width of the
low-speed zones observed in the present experiments varies between 0.25δ and 0.4δ,
which is consistent with earlier studies (Spina et al. 1991; Tomkins & Adrian 2003;
Ganapathisubramani et al. 2006; Ringuette et al. 2008), and the spanwise spacing
between low-speed zones is typically between 0.5δ and 1.0δ.

At larger distances from the wall (figure 3) the low-speed zones decrease in
length, whereas their width changes very little, based on the visual inspection
of the instantaneous results. These observations are consistent with the reported
decreasing correlation lengths of u′ in streamwise direction with distance from
the wall above y/δ = 0.16 and the slowly increasing correlation length in spanwise
direction (Spina et al. 1991; Ganapathisubramani et al. 2006). Furthermore, above
y/δ =0.6 the coherent structures, i.e. low-speed zones and vortices, show intermittent
behaviour, meaning that some snapshots contain only a few separate vortices,
while other snapshots contain distinct elongated low-speed zones that appear
similar to the case presented for 0.34 <y/δ < 0.67 (figure 3a). The example given
here for 0.56 <y/δ < 0.89 (figure 3b) represents the intermediate case, where
the volume contains a number of short low-speed regions surround by vortical
motion.

Plots of the complete measurement volume, such as in figures 2 and 3, reveal that
most vortical structures are concentrated near the low-speed zones. However at this
scale of presentation the character of the individual vortices cannot be appreciated
properly. Therefore a detail taken from the volume of figure 2 is enlarged and shown
in figure 4(a). Over the low-speed zone the heads from a series of streamwise aligned
hairpin (or arch) vortices are visible, which can be considered a hairpin packet (Adrian
et al. 2000). Note that the arch located at x/δ = 1.7 is partially contained in the low-
speed zone and may therefore appear fragmented due to the blue isosurface blocking
the view. The streamwise spacing of the vortices inside this packet is approximately
0.2δ. Figure 4(b, c) presents the corresponding velocity vector field after subtraction
of a convective velocity in two perpendicular cross-sectional planes. The velocity
distribution in the x, y plane (figure 4b) shows swirling motion around the heads of
the individual hairpins. For clarity the circles indicate the location of the vortices as
given by the Q criterion. It is also seen that the vortex heads convect with slightly
different velocities, what will result in the interaction or merging of the vortices at a
later stage. Furthermore, the vortices are of approximately the same size and do not
appear to be aligned along a 12◦–20◦ slope with the wall as in Head & Bandyopadhyay
(1981) or in the logarithmic layer vortex packets observed in Adrian et al. (2000).
Near the top of the volume at y/δ =0.45 the velocity direction and magnitude is very
irregular, which may indicate the presence of (vortical) flow structures just above this
packet. Finally, the distribution in the x, z plane (bottom diagram) shows swirling
motion around the necks of the hairpins. Most of the hairpins are asymmetric
(i.e. a cane type vortex) showing just a single neck on one side of the low-speed
region.
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Figure 3. Instantaneous vortex distribution detected by the Q criterion (green) and low-speed
zones (blue) for 0.34 <y/δ < 0.67 ((a) blue u < 0.89Ue) and 0.56 < y/δ < 0.89 ((b) blue
u < 0.94Ue).

5. Hairpin vortices
In order to further examine the individual vortex structures, two typical examples

of individual hairpin vortex structures are shown in figures 5(a) and 5(b). The first
one is the red coloured vortex in the packet of figure 4. It exhibits an asymmetrical
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a cane vortex and low-speed zone (colour-coding as in figure 2). (c) Cane vortex observed in
a low-speed incompressible boundary layer (Elsinga et al. 2007).

arch shape, and its height and width are 0.33δ and 0.2δ respectively. The irregularities
on the surface of this hairpin, i.e. the blobs attached to the arch, may be either due
to measurement noise or ascribed to smaller scale motions near the arch that have
not been fully resolved and it is well known that a local vortex detection scheme like
the Q criterion cannot distinguish between individual vortices in close proximity.

The second vortex (green, figure 5b) is of a cane type, and it is also found near an
extended low-speed zone (blue). It is slightly higher (0.4δ) compared to the previous
example, but has approximately the same width (0.2δ). The width of both vortices
corresponds to the width of the low-speed zones, as mentioned above in § 4.

Additional statistical evidence for the existence of hairpin vortices at the present
Reynolds and Mach number is given by the conditional eddy obtained by linear
stochastic estimation, which reveals an omega shaped hairpin (green, figure 6a,b). The
event used for the conditional average is the spanwise swirling strength λci,z·sign(ωz)
at y/δ = 0.35 considering only negative values. As seen from figure 6 this event
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c)
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at y/δ = 0.2 (c, d ). The velocity vectors are relative to the eddy convective velocity u′

c , at
y/δ = 0.35 indicated in the upper left corner of each plot. The dashed lines indicate û′ = 0.

corresponds to a hairpin head at the specified location. The neck of the conditional
eddy is at a 45◦ angle with the wall, as expected, and the eddy width is about 0.25δ

(based on the distance between the neck centres as detected by Q) in agreement
with the observed width of the instantaneous hairpins (figure 5), the low-speed zones
(figure 2) and the width versus height relation for the conditional eddies found in
Tomkins & Adrian (2003). Underneath the eddy a 1.0δ long region is visible where the
velocity is smaller than the convective velocity of the conditional eddy (û′ < u′

c, blue).
The convective velocity u′

c is taken as the velocity returned by the linear stochastic
estimation procedure at the event location (rx/δ = rz/δ = 0, y/δ = 0.35). Relative to
the ensemble average velocity u′

c has a negative value, indicating the conditional eddy
advects at a speed smaller than the local average velocity. In contrast, Adrian et al.
(2000) found the heads of instantaneous hairpins convected on average at the mean
velocity corresponding to the location of the centre of the head. The interface between
the low and high-speed fluid upstream of the eddy is inclined at approximately 25◦

with the wall.
Figure 6(c, d ) presents the corresponding fluctuating velocity vectors relative to

u′
c in the x, y symmetry plane at rz = 0 and the x, z plane parallel to the wall

at y/δ = 0.2. The convective velocity is indicated in the upper left corner of each
plot and has been subtracted from the velocity distribution to highlight the swirling
motion around the head and necks of the eddy. The vectors in the x, y plane also
show a shear layer upstream of the hairpin and an ejection event (u′ < 0, v′ > 0)
between the legs of the hairpin, as expected. Furthermore, the vectors in the x, z
plane show a stagnation point in the symmetry plane at rx/δ = −0.42 and upstream
fluid flowing around the eddy. Although not readily apparent from the vectors in
figure 6, because of the subtraction of u′

c the spanwise swirling event does correlate
with elongated regions of low velocity with respect to the local average value. This
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can be seen from the contour line û′ = 0 (dashed lines), which reveal a low-speed
region approximately 0.4δ wide and extending at least 1.2δ in positive and negative
streamwise direction. The slope of the contour in the x, y symmetry plane upstream
of the eddy (rx/δ < 0.3) is approximately 18◦ somewhat larger than the 14◦ reported
in Christensen & Adrian (2001). The discontinuity in the û′ = 0 contour upstream of
the eddy in the symmetry plane is unexpected and is believed to be related to minor
inaccuracies in the measurement to which contours are sensitive, rather than to a flow
feature. The fact that the conditional eddy is contained in a low-speed environment
that is clearly wider and much longer than what can be expected for a single hairpin
or perhaps even a small hairpin packet, suggests the presence of large-scale flow
structures. This will be explored further in § 6.

Conditional eddies have also been computed for negative spanwise swirl events
at different distances from the wall. It was found that the shape of the conditional
eddy did not change appreciably in this part of the boundary layer (well above
the logarithmic layer). The width of the averaged hairpin, however, increased slowly
with its height consistent with Townsend’s attached eddy hypothesis and the trend in
the spanwise correlation length of u′. As an example, for a hairpin head located at
y/δ =0.75 the returned eddy width increased to 0.38δ. Even though these appear to
be attached eddies, in the sense that their size scales with their distance to the wall,
they may still be detached in the sense that they do not extend all the way down to
the wall. This point must be left open here, as the velocity has been measured only
above y/δ =0.15.

For comparison, a hairpin structure returned by tomographic PIV in an
incompressible turbulent boundary layer at Reθ = 1900 (Elsinga et al. 2007; Elsinga
2008) is shown in figure 5(c). The shape is very similar to the hairpins found in
the supersonic boundary layer, as is its size when scaled with the boundary layer
thickness (height 0.35δ and width 0.25δ). Similarity of the flow pattern is also evident
from the conditional eddy as shown by the velocity vectors in figures 6 and 7 for the
supersonic and incompressible case respectively. This seems even more remarkable
when considering that the spatial resolution based on the cross-correlation volume in
both experiments is very different: 708 versus 56 viscous wall units or 0.10δ versus
0.067δ. However, in both experiments the energy containing motions have been
resolved, as evident from the RMS profiles of fluctuating velocity, which compare
to within a few percent with other, high spatial resolution experimental datasets.
The present results reconfirm that the asymmetric hairpin structure is a universal
feature of the energy containing motions in a turbulent boundary layer, also in
supersonic flow conditions. As mentioned before, the width of these hairpins appears
to be closely related to the width of the low-speed zones. Evidence in incompressible
boundary layers suggests that the latter scales on δ over a range of Reynolds numbers
(Hutchins & Marusic 2007), which provides some further indirect support for an outer
scaling of the hairpins, at least above y/δ =0.2.

6. Large-scale structures
6.1. Pre-multiplied power spectra

The pre-multiplied power spectrum is used to obtain the characteristic size of the
large flow structures. In this plot the power spectrum for each velocity component
Φuu(k), Φvv(k) and Φww(k) is multiplied by the wavenumber k so that the area
under the log–linear graphs of kΦ versus k corresponds to the kinetic energy for
each velocity component. Hence the pre-multiplied power spectrum can be used to
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show the contributions of the different wavenumbers k, or alternatively wavelengths
λ=2π/k, to the kinetic energy. Figure 8 presents the pre-multiplied spectra for
streamwise wavelengths λx and spanwise wavelengths λz in the present boundary layer
at y/δ = 0.33. In this figure the area under the plot is normalized, so only the relative
contributions of the different wavelengths are shown. Furthermore, wavelengths below
three times the cross-correlation volume size are strongly affected by amplitude
modulation rendering the data unreliable for these wavelengths. They are, however,
included in the plot (in grey) for completeness.

In the spanwise spectra (figure 8b) a peak contribution is found between λz/δ = 0.7
and 1.0 for all velocity components, which is the wavelength associated to spanwise
distribution of the low- and high-speed zones and their related (vortex) flow structures.
In contrast the streamwise spectra (figure 8a) show peaks at clearly different
wavelengths for each velocity component. Most noticeably the u component does
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Figure 9. Pre-multiplied power spectra obtained by hot-wire anemometry across the
boundary layer.

not peak, but continues to increase beyond λx/δ = 3, which must be attributed to
long streamwise lengths of the low- and high-speed zones extending beyond the
measurement volume. The v component of velocity returns a broad peak ranging
from approximately λx/δ =0.4 to 0.9. It is believed that the broad peak results from
a combination of smaller wavelengths, say λx/δ = 0.4, related to the hairpins shown
in § 5, and larger scales of the order λx/δ = 1. Finally, the streamwise spectrum for
the w component has a more distinct maximum at λx/δ = 1.2, which can be regarded
as a typical size for a turbulent bulge.

To complete the pre-multiplied power spectrum for the u component of velocity
towards the larger streamwise length scales, hot-wire anemometry is used. The
measured frequency information is converted to length scales by applying Taylor’s
hypothesis. Moreover, the effect of density variations across the boundary layer on
the measured momentum fluctuations (ρu)′ is relieved by considering u∗, which is
defined as

u∗ =
(ρu)′

ρ̄
,

where ρ̄ is the local average density obtained from the adiabatic Crocco–Busemann
relation.

The resulting pre-multiplied power spectra are shown in figure 9 for several
wall-normal coordinates y/δ. It is found that above y/δ = 0.2 all spectra peak
around λx/δ = 2, which length scale is accessible within the present Tomographic
PIV measurement volume. Furthermore the energy contained in this length scale is
approximately constant up to y/δ = 0.7, after which it decreases with distance from
the wall. For y/δ = 0.1 a peak is observed near λx/δ =9, which indicates the presence
of VLSM at that height in the boundary layer (Kim & Adrian 1999). The energy
contained in the very large scales decreases with distance from the wall, so that they are
visible only as a small bump in the power spectra up to y/δ = 0.5. This behaviour of the
peak is in agreement with the incompressible boundary layer results of Balakumar &
Adrian (2007). Note that the actual length is believed to be underestimated by the
hot-wire data due to meandering of these very large-scale structures (Hutchins &
Marusic 2007; Ganapathisubramani et al. 2007b). Furthermore, below λx/δ =1.3 the
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pre-multiplied power spectra are slightly affected by the response of the hot wire. The
data is, however, included to illustrate the trend.

From the power spectra it is anticipated that the largest possible vortical structures
are approximately 1.2δ long. This may be inferred by considering that a swirling
motion is always composed out of at least two different fluctuating velocity
components (e.g. λci,x is a function of v and w), which then need to have a similar
energy content at the same wavelength for this motion to possibly be coherent in
space. Because only the spectrum for u is seen to increase beyond λx/δ = 1.2 while
the other two drop off, a swirling motion cannot be coherent over much larger length
scales. In the same way the largest spanwise length scale is estimated at 1.0δ. The
power spectra, however, do not confirm that these motions do indeed exist at that
scale nor do they reveal what the actual shape of these vortices should be. For that,
a spatial low-pass filtering of the velocity fields is required, which suppresses the
small-scale patterns emphasized in visualizations of differential quantities such as
vorticity and swirling strength.

6.2. Filtered velocity fields

The second-order regression of (3.3) is used to low-pass filter each velocity
component with the purpose of bringing forward the topology of the large-scale flow
structures. The second-order polynomial is fit to the velocity in a volume measuring
0.78δ × 0.18δ × 0.28δ in x, y and z direction. The corresponding filter wavelength for
three-dimensional velocity variations can be estimated as twice the fitted volume:
1.5δ × 0.35δ × 0.55δ (see Appendix). The filter wavelength in the streamwise direction
coincides with the expected length of the largest vortical structures as argued above.
The filter size in the spanwise direction is chosen to match the width of the low-speed
zones. Finally, the filter wavelength in the wall-normal direction is necessarily small
to allow variation over the height of the measurement volume.

In the measurement volume closest to the wall, the low-pass filtered velocity
fields return predominately streamwise and wall-normal vortices, which are visualized
in figure 10 by the two-dimensional swirling strengths λci,x and λci,y respectively.
Furthermore, it is seen that both types of vortices occur next to low-speed zones.
The strength of the vortices based on their peak Q value is about 1/4 of the hairpins
presented in § 5. Streamwise vortices are typically inclined at 5◦ with the wall and
are 0.8δ–1.0δ long. Wall-normal vortices often occur in counter rotating pairs on
opposite sides of the low-speed zones, which is the typical hairpin signature in the
x, z plane. Moreover, streamwise vortices have been frequently observed to terminate
in the wall-normal vortices suggesting that they may be considered as legs to cane
or hairpin structures. It is important to note that applying the Q criterion instead of
the two-dimensional swirling strength returns the same vortex structures but merged,
which would have made the interpretation of the results more difficult.

The average properties of the observed wall-normal vortices are investigated further
by calculating the conditional eddy based on the event λci,y ·sign(ωy) (wall-normal
swirling strength) in the low-pass filtered velocity fields at y/δ = 0.33, considering
only positive values. The result is presented in figure 11 showing two counter-rotating
vortices inclined at 45◦ with the wall (magenta) and with a low-speed zone in between,
which is shown by the isosurface of the fluctuating streamwise component of velocity
û′ = 0 (blue). Together the vortices and low velocity again constitute a hairpin vortex
signature, where the vortices visualized in figure 11 are part of a neck on either side
of the hairpin head. As will be shown later, the hairpins are often skewed, which
results in the reduced swirling strength in the second hairpin neck (rz/δ = −0.4) due to
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Figure 10. Streamwise (cyan (a)), wall-normal swirling motion (magenta (b)) and low-speed
zones (blue) in the low-pass filtered velocity field of figure 2 (0.15 <y/δ < 0.47).
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averaging. It should be stressed that no convective velocity has been subtracted from
the vector field here, because the large-scale hairpins are advected at approximately
the local average velocity. The conditional average shows furthermore that the large-
scale hairpin is related to very long zones of relative low velocity approximately 0.4δ

wide, which is nearly identical to the large-scale low-speed region encountered before
in the conditional average of the smaller scale hairpins in figure 6. This may suggest
that these long low-speed zones are actually formed by the large-scale vortices and
that the smaller scale hairpins are in turn more local features contained inside the
low-speed zones associated to the large-scale vortices (see also § 7).

More evidence for the existence of large-scale hairpins is given by the hairpin
heads commonly observed in the volumes covering the region 0.56 <y/δ < 0.89. Two
examples showing vortical motion (magenta) and low-speed zones (blue) in the low-
pass filtered velocity fields at that height are presented in figure 12. In the left volume
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visualized using the Q criterion (magenta) and low-speed zones (blue, u < 0.95·Ue).

isolated arches and canes are seen with a short low-speed zone between the necks,
as expected. The second volume (figure 12b) reveals the streamwise arrangement
of an arch vortex and a neck around an elongated low-speed zone. The neck may
belong to an even taller hairpin vortex structure. Taking the energy around λx/δ = 2
in the pre-multiplied power spectrum kxΦuu (figure 9) as directly representative of
the large-scale hairpins, the decreasing energy peak value for y/δ > 0.7 may indicate
that the large-scale hairpins are approximately 0.7δ tall, which agrees with the present
findings that very few heads are returned in the low-pass filtered volumes closer to the
wall. Furthermore it is noted that at the upper half of the boundary layer large-scale
streamwise vortices have rarely been observed.

The large-scale hairpins described here are not unlike the turbulent bulges in
terms of their dimensions and the notion of large-scale flow rotation (Blackwelder &
Kovasznay 1972; Falco 1977). The hairpin inclination together with its arch shape
also explains the strong streamwise velocity gradient commonly found upstream of
the bulge compared to the weaker gradient downstream. Furthermore, the results are
consistent with the 45◦ structure angle as deduced from dual hot-wire measurements
with a large wall-normal spacing in a supersonic boundary layer (Spina et al. 1991)
and falls within the 30◦–70◦ range for the density structures visualized by Schlieren
techniques (Smith & Smits 1995; Garg & Settles 1998).

6.3. Very large-scale diagonal flow pattern

In the instantaneous low-pass filtered velocity field alignment of the large-scale
hairpins is frequently observed along diagonal lines. One of the clearest examples of
diagonal alignment is presented in figure 13(b) showing velocity vectors and wall-
normal swirl λci,y contours in the plane parallel to the wall at y/δ =0.33. The hairpin
signatures have been indicated in the plot by circles and the dashed lines indicate
the diagonals along which the hairpins appear to be aligned. Figure 13(b) also shows
that the hairpin vortices are often skewed or appear one-sided, i.e. of cane type.
For comparison the original (unfiltered) velocity distribution in the same plane is
presented in figure 13(a). Between the filtered and unfiltered plots little difference
is observed in the low-speed zones. However, the difference in vortical structures is
profound, appearing almost random in the unfiltered data, but clearly more organized
after filtering. The applied filter has a relatively small local support (i.e. considers
vectors only within the 0.78δ × 0.18δ × 0.28δ size kernel), which makes it unlikely that
the observed organized pattern is introduced by the filter.
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The diagonal alignment of the large-scale hairpins is also found in the
autocorrelation of wall-normal swirl strength λci,y ·sign(ωy) in a plane parallel to
the wall (figure 14a). Positive correlation peaks are found in the streamwise direction
at 1.5δ distance from the DC peak and along the 45◦ diagonals at approximately
0.8δ distance from the DC peak in both spanwise and streamwise direction (indicated
by the grey lines). This means that starting from a wall-normal vortex, on average
co-rotating wall-normal vortices exists at these relative positions, as is approximately
the case in the instantaneous result of figure 13. The level of the secondary correlation
peak on the diagonal is 0.02 with an uncertainty of 10 %, which has been estimated
from the differences in the autocorrelation function evaluated for subsets of the full
dataset. This value of the correlation coefficient may appear small and insignificant,
but is in fact of the same order as the secondary peak in the streamwise direction
(approximately 0.03). Therefore, the diagonal pattern may be considered as important
as the average streamwise alignment, which is associated to the very long low-
speed zones in the outer region of the turbulent boundary layer. The latter is a
widely reported feature that is regarded relevant in the literature at present. The
autocorrelation function also shows local minima adjacent to maxima in spanwise
direction at 0.4δ distance, most noticeably on either side of the DC peak, which
can be explained by the large-scale hairpins having counter-rotating necks 0.4δ
apart (see figure 11). In contrast, the autocorrelation of λci,y ·sign(ωy) based on the
original unfiltered velocity fields (figure 14a) shows no obvious diagonal alignment,
but displays only a strong streamwise alignment. This difference demonstrates that a
filtering procedure is necessary to study the large-scale motions effectively, i.e. without
the smaller scales affecting the statistics or dominating the visualization of swirling
motion.

To check that the structure in the autocorrelation map is not introduced by
the filtering, the procedure has been applied to random velocity distributions. The
autocorrelation of wall-normal swirl in that case returns to zero away from the DC
peak at distances greater than the kernel size, which verifies that the observed pattern
is not due to the filter.

At larger distances from the wall the intermittency affects the autocorrelation.
Consequently a larger number of samples is required for convergence, which
unfortunately is not available at present. However, the instantaneous realizations,
like the one shown in figure 12(b), do reveal a staggered arrangement of large-scale
hairpin heads and necks above y/δ = 0.6, from which it is concluded that the diagonal
pattern extends to higher elevations in the boundary layer.

The existence of a very large-scale spanwise or diagonal flow organization is rarely
commented upon in literature. In transitional flow, based on flow visualizations, Perry,
Lim & Teh (1981) have described the initial stages of a turbulent spot using a staggered
arrangement of vortex filaments. For a very low Reynolds number (Reθ = 700) Delo,
Kelso & Smits (2004) have suggested a similar diagonal alignment of dye structures
observed in their incompressible turbulent boundary layer. However, the statistical
support by the autocorrelation functions in their work contains some uncertainties.
Above y/δ = 1, for instance, the result is not converged and consequently multiple
orientations are detectable. Furthermore, below y/δ = 0.7 the primary orientation of
the structures in their correlation map falls within a narrow range of approximately
10◦ with the streamwise direction, which is decreasing further as the wall is approached
and is clearly different from the 45◦ diagonal. It is, therefore, well possible, that the
smaller 10◦ angle reflects another phenomenon like the meandering of the low-speed
zones causing a skewing with respect to the streamwise direction (Hutchins & Marusic
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2007, and also visible in figure 2). Because of the variations in the relative orientations
and distances between adjacent large-scale vortices in the individual snapshots, as also
noted in Delo et al. (2004), a statistic consistent with the instantaneous observations
of a diagonal pattern is desirable. This has been possible to some extent in the
present investigation. Moreover, the interpretations of the previously reported smoke
and dye visualizations in terms of fluid motions are complicated and they have
important subjective components. Still, the instantaneous transitional and the very
low Reynolds number patterns appear similar to our high-Reynolds-number pattern,
and this provides some reason to believe that the diagonal organization of the
large-scale hairpins observed in this study could be found in a wider range of flow
conditions.

7. Discussion
In the above analysis of the experimental results two scales of hairpin vortices

have been identified: the large-scale hairpin (§ 6) with a typical width of 0.4δ and
a smaller scale, 0.25δ wide hairpin (§ 5). The latter is at least four times stronger
than the large-scale hairpin in terms of the peak Q values. Both types of vortices are
found near low-speed zones, and therefore the question arises how these vortices are
organized relative to each other.

A possible answer to this question is provided by the short δ-scale low-speed zones
occasionally observed in the velocity volumes. An example is presented in figure 15,
where the low-speed zone (blue) extends upstream of a single large-scale cane vortex
with only part of the neck (magenta) inside the measurement volume. It must be
noted that the low-speed zone extends down to x/δ = 2.6, where u is just above
the applied threshold for the blue isosurface and is approaching the local average
velocity. The lower threshold is used here for visualization purpose; that is, not to
obscure the vortices. Over the low-speed zone several smaller scale arch and cane
shaped vortices (green) are seen. The most downstream vortices (denoted ‘canes’ in
figure 15) appear slightly larger and more distorted compared to the upstream arches.
This result suggests that the smaller scales occur or are formed on the low-speed zone
associated with the neck and leg of the large-scale cane (or hairpin).

The findings are summarized in the conceptual sketch of figure 16, in which the
large-scale hairpins are aligned in streamwise direction and along the diagonals as
suggested by the autocorrelations function (figure 14). Near the wall (y/δ < 0.5), the
neck and legs of these large-scale hairpins create long low-speed zones, as observed in
the conditional eddy of figure 11, which then connect to form the very long low-speed
zones reported in literature (e.g. Kim & Adrian 1999; Ganapathisubramani et al.
2007a; Hutchins & Marusic 2007). The smaller scale hairpins in turn are located on
top or inside the low-speed zones.

Farther from the wall, say y/δ > 0.5, shorter hairpin packets are found near the
heads and necks of the large-scale hairpins. These packets generally do not connect
in streamwise direction and therefore do not form very long zones of uniform
low velocity. Consequently, the streamwise coherence length decreases with distance
from the wall. The presence of hairpin packets in each snapshot at all three heights
investigated suggest that several uniform (low-) momentum zones (Meinhart & Adrian
1995) or packets stacked on top of each other (figure 25 in Adrian et al. 2000) can
exist simultaneously within the envelope of retarded flow induced by the large-scale
hairpins. In this picture the uniform momentum zone near the wall correspond to
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Figure 15. Large-scale and smaller scale vortices observed around a short 1.4δ low-speed
zone. Blue represents part of a low-speed zone (u < 0.84Ue), green is a Q isosurface indicating
vortical motion in the unfiltered velocity and magenta is an isosurface of the wall-normal swirl
in the low-pass filtered velocity, which indicates the neck of a large-scale cane.

Figure 16. Conceptual sketch of the large-scale (magenta) and smaller scale hairpins (green)
around the low-speed zones (blue).

the observed very long low-speed zones (figure 16), whereas the uniform momentum
zones further from the wall are the shorter hairpin packets as seen in figure 3.

8. Conclusions
The instantaneous, three-dimensional velocity distribution in a supersonic turbulent

boundary layer with Reθ = 34, 000, Me = 2.1 and thickness δ = 20 mm has been
measured by tomographic PIV. The results present a quantitative visualization of
the flow structures in the outer layer from 0.15δ to 0.89δ distance to the wall.
The individual measurement volume ranges over 3.5δ × 0.32δ × 1.8δ in streamwise,
wall-normal and spanwise direction and contains 142 × 14 × 77 velocity vectors.

The instantaneous velocity fields reveal long low-speed zones commonly extending
beyond the measurement volume (> 3.5δ) similar to results from previous studies. Over
these zones hairpin vortices are observed, aligned in streamwise direction forming the
so-called packets. Statistical support for the existence of hairpins at the present
Reynolds and Mach number is provided by the conditional averaged eddy (figure 5).
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The conditional eddy further suggests that the hairpins are contained in a wider and
much larger region of relatively low velocity.

The individual supersonic hairpins and the conditional eddy have been compared
with eddies obtained in an incompressible low-speed turbulent boundary layer. Both
the shape and the size of the eddies are found to be very similar for the two flow
cases when scaled with the outer length scale (the boundary layer thickness δ), which
suggests universality of these structures.

Additionally, the velocity fields have been low-pass filtered to reveal 1.0δ long
streamwise vortices and signatures of large-scale hairpins 0.4δ wide. Large-scale
hairpin heads have also been observed at larger distance from the wall (y/δ > 0.6)
likely corresponding to the mentioned signatures closer to the wall. These large-
scale hairpin structures are reminiscent of turbulent bulges as for example described
by Blackwelder & Kovasznay (1972) and Falco (1977). Furthermore, they display
a preferential alignment in streamwise direction (at 1.5δ spacing) and along the
diagonals at 45◦ with streamwise direction in the plane parallel to the wall.
Evidence for this staggered arrangement of the large-scale hairpins is found in
both instantaneous realizations as well as in the statistics, i.e. the autocorrelation of
wall-normal swirl in the plane parallel to the wall.

The streamwise alignment of the large-scale hairpins results in very long regions of
low velocity. These regions are 0.4δ wide as determined from a conditional averaging,
which is consistent with the observed low velocity imprint in conditional eddy
corresponding to the smaller scale hairpin. Furthermore, both scales of hairpins
are found near the same low-speed zones in the instantaneous volumes. It is therefore
believed that the smaller hairpins are contained within the envelope of low-speed flow
induced by the large-scale hairpins.

This work is supported by the Dutch Technology Foundation STW under the ‘VIDI
Vernieuwingsimpuls’ programme grant DLR.6198. LaVision GmbH is gratefully
acknowledged for providing the camera system and Bernd Wieneke contributed
in the data processing providing the volume self-calibration procedure. Furthermore,
the help of Dirk Jan Kuik and Ray Humble during the measurements is greatly
appreciated. Part of the work was carried out when G. E. Elsinga was visiting
Arizona State University with the support of the Ira A. Fulton endowment.

Appendix. Frequency response of the regression filter
The spatial frequency response of the second-order regression filter of (3.3) is

illustrated here by considering a one-dimensional velocity field before filtering V (x)
of the form

V (x) = u0 sin(2πx/λ) (A.1)

and a three-dimensional distribution V (x, y, z) of the form

V (x, y, z) = u0 sin(2πx/λ) sin(2πy/λ) sin(2πz/λ), (A.2)

where λ is the wavelength and u0 is the amplitude. When comparing the filtered
velocity distribution with the actual velocity a velocity modulation coefficient may
be defined as the ratio of the peak velocity after and before filtering u/u0. The
modulation coefficient for the velocity gradient ux/ux,0 is defined in a similar manner.
The resulting modulation coefficients for different wavelengths are shown in figures 17
and 18 for the one-dimensional and three-dimensional case respectively. In the plots
the wavelength length λ has been normalized by the filter width or kernel size Wf.
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Figure 17. Modulation of the one-dimensional velocity field (a) and velocity gradient (b) by
the second-order regression (solid line) and moving average filter (dashed line) as a function
of wavelength.
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Figure 18. Modulation of the three-dimensional velocity field (a) and velocity gradient (b) by
the second-order regression (solid line) and moving average filter (dashed line) as a function
of wavelength.

Moreover, the moving average filter response is included in the plot as a reference. For
the one-dimensional velocity distribution minor amplitude modulation (u/u0 > 0.9) is
observed for wavelengths λ/Wf > 1.3 (figure 17a). The modulation increases quickly
(decreasing u/u0) with decreasing wavelength when the wavelength is smaller than
the filter width (λ/Wf < 1). Furthermore, small negative values of u/u0 are found
near λ/Wf = 0.5, which is indicative of the filtered velocity being out of phase with
the actual velocity. This is, however, of no consequence when Wf is chosen as the
cross-correlation window size, since these frequencies are not resolved by PIV.

Compared to the one-dimensional case, the modulation coefficient at a given
wavelength is lower for the three-dimensional velocity field (figure 18a), where
u/u0 > 0.9 for wavelengths λ/Wf > 2.9. Another clear difference is the absence of
negative u/u0 peak near λ/Wf = 0.5. Although not shown, a two-dimensional velocity
distribution has been considered also. Its wavelength response is in between the one-
and three-dimensional result, as expected, with u/u0 > 0.9 for wavelengths λ/Wf > 2.3.
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Finally, the velocity gradient modulation for the regression (figures 17a and 18a)
is found to be very similar to the moving average filter modulation, especially for the
three-dimensional case.
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